If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81^2k=1/243
We move all terms to the left:
81^2k-(1/243)=0
We add all the numbers together, and all the variables
81^2k-(+1/243)=0
We get rid of parentheses
81^2k-1/243=0
We multiply all the terms by the denominator
81^2k*243-1=0
Wy multiply elements
19683k^2-1=0
a = 19683; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·19683·(-1)
Δ = 78732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{78732}=\sqrt{26244*3}=\sqrt{26244}*\sqrt{3}=162\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-162\sqrt{3}}{2*19683}=\frac{0-162\sqrt{3}}{39366} =-\frac{162\sqrt{3}}{39366} =-\frac{\sqrt{3}}{243} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+162\sqrt{3}}{2*19683}=\frac{0+162\sqrt{3}}{39366} =\frac{162\sqrt{3}}{39366} =\frac{\sqrt{3}}{243} $
| 5t+50=125 | | 3x7=5 | | 90+-1x=87 | | 4.9x^2+30x-50=0 | | 4.9x^2+30x+50=0 | | 17=p/12 | | x*13+21=x*4+255 | | (x-2)+2x-4=9 | | 30x+-15+25x=180 | | x2+18x+5=0 | | -5=v-5/6 | | 25=b+2 | | -9x+11=15-8(x-3) | | 6=c+9 | | 17=t+12 | | e+10=21 | | 2.19c+355=10.12 | | 4v+16=16 | | (2n/3)/(3n/2)=1/2 | | 2=m/6 | | -6x-3=x+12 | | -6-2r-7=17+r | | 5/7u=25 | | 5u-20=-5u | | 10x-44=0 | | 2x11=4x3 | | 4(x-9)=41 | | -3(p-17)+-5=-2 | | -3(j-4)=-9 | | 3x-30=-15+x+12 | | (x^2-2x-4)(x^2-3x-5)=x | | -2(p+-2)=-2 |